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Abstract

The stabilization of high order spectral elements to solve the transport equations for tracers in the
atmosphere remains an active topic of research among atmospheric modelers. This paper builds
on our previous work on variational multiscale stabilization (VMS) and discontinuity capturing
(DC) [Variational multiscale stabilization of high-order spectral elements for the advection-diffusion
equation J. Comput. Phys. 231 (2012) 7187-7213] and shows the applicability of VMS+DC to
realistic atmospheric problems that involve physics coupling with phase change in the simulation
of 3D deep convection. We show that the VMS+DC approach is a robust technique that can damp
the high order modes characterizing the spectral element solution of complex coupled transport
problems. The method has important properties that techniques of more common use often lack:
1) it is free of a user-defined parameter, 2) it is anisotropic in that it only acts along the flow
direction, 3) it is numerically consistent, and 4) it can improve the monotonicity of high-order
spectral elements. The proposed method is assessed by comparing the results against those obtained
with a fourth-order hyper-viscosity programmed in the same code. The main conclusion that arises
is that tuning can be fully avoided without loss of accuracy if the dissipative scheme is properly
designed. Finally, the cost of parallel communication is that of a second order operator which
means that fewer communications are required by VMS+DC than by a hyper-viscosity method;
fewer communications translate into a faster and more scalable code, which is of vital importance
as we approach the exascale range of computing.
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1. Introduction

In the field of numerical weather prediction, regardless of the numerical method that atmo-
spheric models use, dissipation of some sort is added for various reasons. Stabilization is one of
them and represents the main topic of analysis of this paper. Due to its ease of implementation
and robustness, artificial diffusion is the most common mean of dissipation that is found in cur-
rent research and operational weather forecast models (cf. Jablonowski and Williamson (2011)
and citations therein). Given an advection-dominated problem described by the general evolution
equation

qt = Lq, (1)

where L is a set of differential operators acting in space on q, the explicit dissipation of q is classically
modeled as a diffusion operator (hyper-viscosity, HV, from now on) in the form of

HV = (−1)α+1∇α · (ν2α∇αq), (2)

where α is a positive integer and ν2α is the diffusivity coefficient. HV is sometimes found also
in other fields of computational fluid dynamics; one example is found in Baruzzi et al. (1992) to
preserve higher order accuracy in the simulation of high speed flows. In the stabilization of finite
elements, the orthogonal subscale (OSS) approach for sub-gridscale modeling (see, e.g., Codina
(2002)) could, in principle, also be seen as a dynamic version of such a scheme. However, even if
HV in the form of Eq. (2) is scale-selective and only damps higher frequencies, it is not physical.
With respect to consistency, the diffusion coefficient should decrease as the grid is refined; this
condition is respected by HV if the value of its coefficients is reduced as the resolution increases,
approaching zero as the grid is sufficiently refined. Nonetheless, because HV does not depend on
the residual of the equations, its strength and anisotropy cannot adapt to the flow direction and
strength automatically. Additionally, for a stabilizing scheme to preserve the shape of the tracer,
dissipation normal to the flow should be avoided whereas the dissipation in the direction of the flow
should be sufficient to control instabilities or unboundedness (Hughes and Brooks, 1979; Hughes
et al., 1986; Codina, 1993). This condition will not be respected by diffusion schemes such as HV,
as exemplified in Fig. 1. To preserve the correct physical dimensions of the hyper-viscous term,
the value of ν2α must scale correctly with respect to α and the grid spacing. Its selection not only
is non-trivial, but has a great impact on the solution of the problem. Quoting Jablonowski and
Williamson (2011) ”The choice of the ∇2,∇4 or even higher-order diffusion coefficient is most often
motivated by empirical arguments and chosen in a somewhat arbitrary manner. It is sometimes
even considered a model tuning parameter [...]”.

It is well known that the straightforward numerical approximation of Eq. (1) that models
advection-dominated problems is characterized by Gibbs oscillations that may render the solution
unacceptable. These oscillations are treated by either anti-aliasing filters ( e.g., Vandeven (1991);
Boyd (1998)) alone or, possibly, by a combination of the latter with some type of artificial diffusion
in the form of (2) to improve the non-monotonic filtered solution. Research in finding the optimal
solution to this problem is still ongoing (see, e.g., Malm et al. (2013)).
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Figure 1: Advection of a 2D square wave in a doubly-periodic channel with velocity directed along the x-axis, which
corresponds to the bottom-right edge of the squared surfaces in the three plots. Stabilization achieved by the operators
∇2 (left) and ∇4 (center), with constant coefficients ν2 = 0.001m2 s−1 and ν4 = 0.000001m4 s−1, respectively, and
using VMS (right). Reprinted from Marras et al. (2012), Fig. 21, with permission from Elsevier.

In the quest for a solution to the drawbacks of HV and for the improvement of the monotonicity-
preserving properties of stabilized high-order methods, the main novelty of our current paper lies
in the application of the variational multiscale stabilization (VMS) by Hughes (1995) with the
crosswind discontinuity capturing by Codina (1993) (DC from now on) to stabilize the spectral
element solution of three coupled advection equations in the simulation of fully 3D deep convection.
To our knowledge, the only application of VMS to high order spectral elements for coupled problems
appears in Gjesdal et al. (2009) for the turbulence modeling of incompressible flows. In the case of
Marras et al. (2012), VMS+DC was only applied to solve one scalar advection problem and verified
against standard benchmarks in one and two dimensions. The characteristic velocities of deep
convection may be orders of magnitude larger than those in the purely academic tests presented
in our previous work, thereby subjecting the scheme to a more demanding test when it comes to
stabilization and treatment of over- and undershoots. In the simulation of deep convection, this
scheme was successfully applied by Marras et al. (2013) for 2D problems using linear finite elements.
The main goal of this work is then to prove the applicability of VMS+DC to 3D realistic atmospheric
simulations and show that VMS+DC is 1) parameter-free, 2) anisotropic, 3) numerically consistent,
4) inexpensive on parallel computers, and 5) can improve the monotonicity-preserving properties
of high order spectral elements. We implement this stabilization method within the Nonhydrostatic
Unified Model of the Atmosphere (NUMA) (Kelly and Giraldo, 2012; Giraldo et al., 2013).

The equation sets and the details of the residual-based stabilization and crosswind dissipation
are reported in Sec. 2. The fundamental results for a fully 3D squall line simulation are shown in
Sec. 3. A summary of our conclusions is discussed in Sec. 4.

2. Equations, their discretization, and stabilization techniques

Let Ω ∈ R3 be a fixed three dimensional domain with boundary ∂Ω and Cartesian coordinates
x = (x, y, z). Let us identify the dry air density, the velocity vector, and the potential temperature
with the symbols ρ,u, and θ. Let us also define the mixing ratios of water vapor, cloud water,
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and rain as qv = ρv/ρ, qc = ρc/ρ and qr = ρr/ρ, where ρv,c,r are the densities of water vapor,
cloud, and rain. Furthermore, let ρ′(t,x) = ρ(t,x)− ρ0(z), θ′(t,x) = θ(t,x)− θ0(z), and p′(t,x) =
p(t,x) − p0(z) be the perturbations of density, potential temperature, and pressure with respect
to a hydrostatically balanced background state indicated by the subscript 0 (see, e.g., Marchuk
(1974)). Then, the strong form of the time-dependent Euler equations that model a stratified,
moist atmosphere can be written as1:

ρ′t + u · ∇ρ+ ρ∇ · u = 0,

ut + u · ∇u + 1
ρ∇ · (Ip

′) = gk(1 + εqv − qc − qr),

θ′t + u · ∇θ = Sθ(ρ, θ, qv, qc, qr),

qit + u · ∇qi = Sqi(ρ, θ, qv, qc, qr), for i = v, c, r,

(3)

where I is the rank-3 identity matrix, gk is the acceleration of gravity directed as k = [0 0 1]T ,
and ε = R/Rv is the ratio of the gas constants of dry air, R, and of water vapor, Rv. θ, ρ, and
p are related through the equation of state for a perfect gas. Because moist air contributes to
the buoyancy of the flow, the right hand side of the momentum equation is corrected by the total
buoyancy B = gk(1 + εqv − qc− qr). Due to the microphysical processes that involve phase change
in the water content, the source/sink terms identified by Sθ,qi are modeled and computed via the
Kessler microphysics for warm clouds (Kessler, 1969). The system of Eqs. (3) must be solved in Ω
∀t ∈ (0, tf ) with properly assigned initial and boundary conditions. Because in this study we are
mainly interested in the solution of the advection equations of water tracers, we concentrate on the
last three equations of the system. To simplify the description of their numerical treatment later,
we re-express them in compact form as:

qt + Lq = S(q), (4)

where

q =

qvqc
qr

 , Lq = u · ∇

qvqc
qr

 , S(q) =

SqvSqc
Sqr

 . (5)

Because the coupling of (4) with the Euler equations is done by the saturation adjustment of
Soong and Ogura (1973), the solution is first obtained for the homogeneous counterpart of Eq.
(4) before the sources are computed and the unknowns updated through Kessler. Because we

1For the sake of precision, the Euler equations are only the first three equations of the system, and are coupled to
the equations for the quantities qi through velocity and the source terms.
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already describe the spectral element approximation of the scalar counterpart of Eq. (4) in our
previous work (Marras et al. (2012)), we can omit the details on spectral elements and proceed to
the description of their stabilization.

2.1. Stabilization of spectral elements

Let us define the space of trial solutions as Q = {q ∈ H1(Ω) : q = g on ∂Ω} and the space of
test functions Ψ = {ψ ∈ H1(Ω) : ψ = 0 on ∂Ω}, where bold indicates a vector quantity and the
discrete counterpart of Q and Ψ will be indicated by the superscript h. Given the basis function
ψh, the stabilized spectral element solution of (4) consists in finding the solution qh ∈ Qh such
that ∫

Ωh

ψh
[
qht + Lqh

]
dΩh + b(ψh,qh) =

∫
Ωh

ψhS(q)dΩh (6)

holds ∀ψh ∈ Ψh. In Eq. (6),

b(ψh,qh) = −
Ne∑
e=1

∫
Ωh

e

[
L∗ψh

]
τR(qh)dΩh

is the stabilizing term defined as a function of: the adjoint operator L∗ acting onto the basis
function, the equations residual R(qh), and the parameter

τ =

(
2|u|
h

+ epsilon

)−1

,

where h is a characteristic length of the computational grid. Because of the somewhat uncertain
definition of τ (Knobloch (2008)), the choice of h may vary as a function of the physical characteris-
tics of the problem and of the structure of the grid. For example, Owen et al. (2013) achieved better
solutions by taking h as the length of the shortest element edge in the flow boundary layer. In this
study we use h =

√
∆x2 + ∆y2 + ∆z2, where ∆· is the mean distance between two consecutive

nodes within a high order element with unequally spaced nodes. Because velocity may be zero, the
machine epsilon is added to avoid divisions by zero on the computer. Should it be the case that
Eq. (4) included some physical diffusion ν (e.g. eddy viscosity, thermal diffusion), τ would simply
include it in the form

τ =

(
ν

h2
+

2|u|
h

+ epsilon

)−1

.

This is not the only definition of τ that can be found (see, e.g., Knobloch (2008)). For up to
cubic elements with equally spaced nodes, a derivation of the components of τ was obtained by
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Table 1: Recommended values of the constant C as a function of the elements’ order.
linear quadratic cubic quartic

C 0.7 0.35 0.23 0.175

Houzeaux et al. (2009). Based on Houzeaux et al., τ for elements with unequally-spaced nodes was
obtained by Marras et al. (2012) although, for the sake of simplicity and without a great loss of
accuracy, it is not used in this study. Because b(ψh,qh) is a function of the equation residual and of
a characteristic grid size, the effect of stabilization goes to zero as the exact solution is approached.
This makes the method numerically consistent. One additional property of this stabilizing scheme
is its anisotropy. The stabilizing effect only acts along the direction of the flow, which is the only
direction where advection dominates diffusion (if any).

2.2. Crosswind discontinuity capturing

Stabilization in the form of (6) is neither monotonic nor monotonicity preserving; hence, over-
and undershoots are still likely to affect the solution. This is especially true for large gradients in the
transported quantities. To overcome this issue for low order finite elements, Codina (1993) designed
an additional controlled crosswind discontinuity capturing that acts in the proximity of internal
and boundary layers and that is orthogonal to the wind direction. The additional dissipation to be
added to Eq. (6) is built as

DC =

Ne∑
e=1

∫
Ωh

1

2
max

{
0, C − 2ν

|u|||h

}
h
|R(qh)|
|∇qh|

∇ψh ·
(
I− u⊗ u

|u|2

)
· ∇qh dΩh, (7)

where u|| is the velocity component in the streamline direction and ⊗ indicates a tensor product.
The constant C is not user-defined. Its values were suggested by Codina (1993) for linear and
quadratic elements. Based on the values provided by Codina, we extend them to higher order
polynomials by a simple extrapolation from the linear and quadratic values and report them in
Table 1. Note that Codina assumes finite elements with equi-spaced nodes. Although the values
that he suggests seem to conform sufficiently well with the Legendre-Gauss-Lobatto points at order
4, a proper study should be made to define C for higher order spectral elements. To our knowledge,
this remains an open topic but falls beyond the scope of this paper. From now on, the symbol
VMS+DC will be used to indicate stabilization with crosswind discontinuity capturing.

2.3. Anisotropic HV

Because of the large aspect ratio of the grid elements that we use in the three-dimensional
cloud simulations presented below, where hx,y � hz, we implemented an anisotropic version of the
hyper-viscosity operator defined in Eq. (2) and write it as

HVa = (−1)α+1∇α · (ν2α∇αq), (8)
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where

ν =

 νx 0 0
0 νy 0
0 0 νz


is the matrix of the diffusion coefficients along the x, y and z directions. This scheme may be
seen as a simplified version of the tensor hyper-viscosity that was recently analyzed in Guba et al.
(2014). The implementation, albeit simple, requires some attention if the higher order operator is
built recursively. After building the second order Laplace operator using Eq. (8), ν must be set to
the identity matrix for every subsequent application of the higher order derivation.

Remark 1. The anisotropy of HVa must be understood in a different way with respect to the
anisotropy of VMS+DC. HVa owes its anisotropy to the fact that the magnitude of the dissipation
varies based on the shape of the grid but it still acts in all directions regardless of the flow features.
On the other hand, VMS+DC is anisotropic in that the dissipation acts exclusively along the flow
direction and not normal to it. This is an important feature that stabilizing schemes, unlike physical
stresses or diffusion, should preserve to least affect the flow physics.

3. Numerical experiments

To verify that the NUMA implementation of the method is correct and able to reproduce the
results of our previous work, we first run the Atmo-3D benchmark of Marras et al. (2012). The
simulation of a fully three-dimensional squall line follows Atmo-3D. To understand how the method
performs on moist dynamics, the negative values of the three moisture variables are not filtered in
the Kessler microphysical scheme as is typically done to avoid negative moisture.

3.1. Atmo-3D: cylindrical tracer in a buoyant atmosphere

A passive tracer is transported in a neutrally stratified atmosphere contained in Ω = [1×∞×1]
km3. The simulation final time is tf = 600 s. The neutral background atmosphere at uniform
potential temperature θ0 = 300 K is perturbed by a cylindrical thermal of radius rc = 250 m,
centered in (xc, zc) = (500, 350) m, aligned with the y-axis, and defined by

θ′ =

{
0.5
[
1 + cos

(
rπ
rc

)]
if r ≤ rc

0 elsewhere,
(9)

where r =
√

(x− xc)2 + (z − zc)2. The east, west, top, and bottom boundaries are modeled as
free-slip solid walls whereas periodic boundary conditions are imposed on the north and south walls
(y-direction).

The results plotted in Fig. 2 are quantitatively and qualitatively comparable to the simulations
presented in our previous work where the element grids are defined by 10×1×10 and 20×1×20
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Figure 2: Atmo-3D: passive tracer in a rising thermal field. Vertical slice of qtracer at y = 0 m. Left: initial condition.
Center: coarse simulation with 10× 1× 10 elements of order 4. Right: fine simulation with 20× 1× 20 elements of
order 4. The results are shown at time tf=600 seconds.

elements of order 4. Nonetheless, a careful eye may spot minor differences. The differences are
due to the use of different time-integrators between the two codes, which implies different time
steps. The velocity field that drives the passive tracer is obtained by the coupling of the advection
equations with the Euler equations that model the motion of the thermal bubble. To preserve a
numerically stable SEM solution of the Euler equations, the Boyd-Vandeven filter (Vandeven, 1991;
Boyd, 1998) was applied. Because this filter is not idempotent, its application at different time
steps will give different solutions of thermal perturbation and, consequently, affect the solution of
the water tracers. However, the results between the two model simulations are sufficiently similar
which gives us confidence that the implementation of VMS+DC in NUMA is coded properly. We
would like to stress that no filter was applied to the spectral element solution of the advection
equations for the three tracers, that were solely stabilized by VMS and DC. We now proceed and
verify the methodology in a fully coupled and convection-permitting system where the tracers are
subjected to phase change and the equations are thermodynamically coupled to the Euler equations
of compressible flows.

3.2. Squall line

To further evaluate VMS+DC we apply it to the simulation of (I) the squall line of Weisman
et al. (1988) (WKR88, from now on) and of (II) the squall line over a flat terrain of Frame and
Markowski (2006) (FM06, from now on). The two simulations are initialized with the same sounding
given by Weisman and Klemp (1982) but differ in the domain size and in the intensity of the thermal
perturbation. A westerly sheared flow has an increasing velocity ranging from 0 m s−1 at the surface
to 17.5 m s−1 at z = 2.5 km and upward. We consider it useful to execute both simulations to
test the sensitivity of the parameter-free scheme in different, yet similar, situations. Convection is
triggered by a cylindrical thermal aligned with the y-axis and defined as
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θ′ =

{
θc cos

(
rπ
2

)2
+ 0.5

∣∣sin (yπ10

)
+ cos(y20.3)

∣∣ if r ≤ 1,
0 elsewhere,

(10)

where r =
√

(x− xc)2/r2
x + (z − zc)2/r2

z , θc = 2 K in WKR88, and θc = 4 K in FM06. In both
cases, the thermal has radii (rx, rz) = (10 km, 1.4 km) and is centered in the middle of the domain at
(xc, yc, zc). The last two terms on the right hand side of Eq. (10) define a non-periodic perturbation
to the otherwise axisymmetric thermal. We use this expression instead of a random perturbation of
θ for the sake of reproducibility of the same initial state. At the four lateral boundaries periodicity
is used, whereas the ground and top boundaries are modeled as inviscid solid surfaces. To absorb
the vertically propagating gravity waves we add a 5 km absorbing sponge at z = zs = 12 km.
The sponge is a Rayleigh-like layer defined as follows. In the area occupied by the sponge, the
solution variables q are corrected as q = D(q−qb), where b indicates the value of q on the physical
boundary and D is the damping coefficient given by

D =

{
sin4

[
π
2

(z−zs)
(ztop−zs)

]
if z ≥ zs

0 if z < zs.

3.2.1. Squall line I: WKR88

For the WKR88 test, we divide the domain Ω=[180×120×17.5] km3 into 36×16×20 elements
of order 4. The simulation is executed until tf =14400 seconds. Without coefficients to be selected,
only one simulation is executed using VMS+DC. On the other hand, four simulations are run using
hyper-diffusion: a first set of three using HV with uniform coefficients ν4 =

{
104, 106, 108

}
m4 s−1

and one using HVa with coefficients νx = νy = 1 × 107 m4 s−1, νz = 3 × 104 m4 s−1. As we will
notice below, these values of νx, νy and νz would make the simulation unstable if used isotropically.
The time series of maximum and minimum vertical velocities are plotted in Fig. 3. For all the
diffusion configurations the first updraft is triggered within the first 30 minutes. In the case of
VMS+DC, peak values between 35 and 45 m s−1 are reasonably comparable to the observed 30
m s−1 of Weisman et al. (1988) for the same 17.5 m s−1 shear. The absolute value and trend are
also in agreement with Weisman and Klemp (1982) where a sequence of storm growths and declines
are observed due to the continuous cycle of cloud formation, rainout, and dissipation. A steadily
decreasing intensity of the updrafts is predicted by all the HV solutions as well, although the
maximum strength of the updrafts larger than 60 m s−1 is possibly indicating that none of the HV
coefficients selected so far is sufficiently dissipative under these flow conditions. Albeit educated, the
choice of ν4 is practically arbitrary. Of these three values, the only ν4 that preserves stability for the
full length of the 14400 second simulation is ν4 = 1× 106 m4 s−1, even if the large 85 m s−1 peak at
approximately 2.5 hours and another large peak at almost 4 hours are the symptoms of an incipient
breaking that was eventually controlled by the end of the simulation. Given the current grid, the
other values of ν4 are either too small or too large and hence cause the simulation to lose stability.
In simple words, when ν4 is too small, the stability loss is due to the insufficient dissipation at the
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Figure 3: WKR88: time evolution of max(w) (top) and min(w) (bottom). Because the HV simulation with ν4 =
1 × 108 m4 s−1 lost stability within the very first seconds, its time series are not visible in the plots. This is also
reflected in the curves of qc and qr in Fig. 4.
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given resolution. The value ν4 = 1 × 104 m4 s−1 preserves a stable simulation for approximately 2
hours but breaks right after, as visible from the trimmed black curve in Fig. 3. The problem can be
solved by either increasing the resolution or increasing the dissipation coefficient. In either case, the
time step must be decreased to respect the stringent limit that diffusion and resolution impose on
the time step. Although we are using an implicit-explicit (IMEX) time integration scheme to solve
the system of equations (3), diffusion is currently treated explicitly. Diffusion may be included in
the IMEX time-integrators but it would prevent us from deriving a Schur form, which is the reason
for the success of IMEX methods. Because it falls beyond the scope of this paper, we will not enter
the details of time integration and its analysis; the interested reader should refer to Giraldo et al.
(2013) for more on this topic.

We are aware that we cannot increase ν4 arbitrarily in this simulation because of the highly
anisotropic grid made of elements that are much smaller along the z-direction than they are along
x and y. Based on scaling arguments, this simply translates to choosing a smaller viscosity along
z but still satisfying the larger dissipation needs in the two other directions. We then execute the
simulation using the HVa (Eq. (8)) with coefficients νx = νy = 1× 107 m4 s−1, νz = 3× 104 m4 s−1

to reach a stable solution that admits maximum updrafts within the acceptable limits presented in
previous studies. Improved results obtained with HVa with respect to HV are noticeable by looking
at the the red, dashed-dotted curve in Fig. 3.

With respect to the treatment of the undershoots, Fig. 4 shows that VMS+DC greatly reduces
the undershoots that affect cloud water and rain and that are not controlled by any of the 4th-order
hyper-viscosities. To verify that the curtailing of the undershoots is not the mere result of excessive
dissipation by VMS+DC, we plot the evolution of the total accumulated rainfall at 3600 s, 4800 s,
and 7200 s in Fig. 5. Because Weisman et al. (1988) do not report the values of either accumulated
or instantaneous precipitation, we refer to the values of total accumulated rainfall reported by
Frame and Markowski (2006). In spite of the different domain and resolution, the values of Frame
and Markowski are still a valuable source of expected precipitation given a certain initial sounding.
In Frame and Markowski (2006), after 18000 s the precipitation ranges between 5 and 50 mm. In
this study, at 7200 s the accumulated rainfall ranges between 0 and 35 mm (Fig. 5) and reaches a
maximum of 60 mm after 14400 s (not shown). We should note that by 14400 s our squall line has
crossed the western boundary and has re-entered the domain through the eastern boundary due
to periodicity. For this reason, a direct comparison may be no longer possible since, at the second
pass of the storm, more rain has precipitated in a region where it would have not precipitated
otherwise. The contours of the accumulated rain from the HVa simulation are plotted in the same
figure. As partially expected from the observations of the time evolution of velocity, qc, and qr, the
extremely small dissipative effect of HVa causes a lot more rain to form and precipitate. Again,
this is classically solved by better tuning the coefficients.

In Fig. 6, we show a vertical cross section of the line-averaged cloud content resolved by
VMS+DC and HV. In agreement with the time series, as time evolves from 1800 to 7200 seconds
the VMS+DC solution preserves stability and smoothness of the cloud water content. The classical
anvil shape of the cloud is preserved by both simulations, although the HV solution presents an
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Figure 4: WKR88: time evolution of min(qc) (top) and min(qr) (bottom). Because the HV simulation with ν4 =
1× 108 m4 s−1 lost stability within the very first seconds, its time series is not visible in the plots.
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Figure 5: WKR88: total accumulated rainfall (mm) at tf = 3600s (top row), tf = 4800s (middle row), and tf = 7200s
(bottom row). Left column: VMS+DC. Right column: HVa with νx = νy = 1× 107 m4 s−1, νz = 3× 104 m4 s−1.
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overall increasing oscillatory behavior that eventually breaks the anvil and the overall shape of the
cloud. This is simply due to the suboptimal choice of the diffusion coefficient. The same occurs
with HVa as is visible in the time series. The large extrema in the time series indicate that this
particular HV simulation is close to diverging and that a slightly larger coefficient will improve the
solution.

Remark 2. Throughout this article we often give hints on the possible solutions that could im-
prove either HV or HVa, but we limit ourselves to find the first possible coefficient that avoid the
simulation to diverge. We never go further than this because the purpose of this article is not
that of assessing HV, as this has been done thoroughly by other authors before. However, we
still consider it necessary to show the results obtained with HV and HVa to have a direct form of
comparison of what can be achieved with VMS+DC when HV is coded in the same exact code and
the same simulations are run. No conclusive remarks on HV are meant to arise from this analysis.

In Fig. 7 we are looking at the time and space evolution of the 3D iso-surfaces of qc. The
geometry, the position of the lifting condensation level, and the vertical extension of qc obtained with
VMS+DC are in good agreement with Weisman et al. (1988) and Weisman and Rotunno (2004).
Since an analytic solution to this problem does not exist, we cannot draw definitive conclusions;
however, given the specific initial sounding, certain properties of the space distribution of the storm
should be consistent with previous studies, and we have been able to achieve this with VMS+DC. A
first conclusion can already be drawn at this stage: without a constant to be tuned, VMS+DC can
still produce suitable solutions. If we count the number of simulations that was necessary to run
before obtaining a meaningful result from a parameter-dependent method, the enormous advantage
of a parameter-free scheme is evident.

Given the same initial field but a different domain and different resolution, we then proceed
with the FM06 test for further testing that may confirm this statement.

3.2.2. Squall line II: FM06

For the FM06 test, we divide the domain Ω=[300×60×17.5] km3 into 80×12×9 elements of
order 4. Our domain extends 100 km less than the FM06 along the x-axis. This makes the
simulation relatively smaller but without compromising the full development of the physical features
of the squall line. Periodic boundary conditions are used at the four lateral boundaries (unlike in
Frame and Markowski (2006), where periodicity is imposed along y only). The simulation is run
until tf =18000 seconds. We execute the same simulation using VMS+DC, isotropic HV with
ν4 =

{
104, 106, 108

}
m4 s−1, and HVa with νx = νy = 109, νz = 3× 105 m4 s−1.

The initial convection forms within the first 900 s for all cases; a line of single convective cells
has formed by 1800 s and continues to develop while merging into one single line as the simulation
continues (Fig. 8). The same features of the evolving storm are observed for VMS+DC and for
every stable HV, including HVa. This is stressed by the time series of the maximum and minimum
vertical velocities plotted in Fig. 9. Except for ν4 = 1 × 104 m4 s−1 and ν4 = 1 × 106 m4 s−1, the
maximum vertical velocities obtained with VMS+DC, HV with ν4 = 1×108 m4 s−1, and HVa show
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Figure 6: WKR88: line averaged vertical cross sections of qc at 1800, 3600, and 7200 seconds. Stabilization achieved
by VMS+DC (left column) and by HV with ν4 = 1× 106 m4 s−1 (right column).
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Figure 7: WKR88: perspective view of the squall line (grey scale) at 1800, 3600, and 7200 seconds. Stabilization
achieved by VMS+DC (left column) and by HV with ν4 = 1× 106 m4 s−1 (right column). The velocity vectors at the
surface are plotted every 7 grid points. The instantaneous surface rainfall is represented by the contour lines. The
plotted domain is Ωplot = 180× 120× 17.5 km3. (In Matlab: azimuth = -110, elevation = 10).

16



Figure 8: FM06: perspective view of the squall line (grey scale) at 1800, 3600, and 7200 seconds. Stabilization
achieved by VMS+DC (left column) and by HV with ν4 = 1 × 108 m4 s−1 (right column). The velocity vectors at
the surface are plotted at every 7 grid points. The instantaneous surface rainfall is represented by the contour lines.
The plotted domain is Ωplot = 300× 60× 17.5 km3. (In Matlab: azimuth = -110, elevation = 10).
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the same rate of decay and extremely close values along the whole 18000 s. The absolute values
and the trends are congruent with the literature2.

Looking at the curves of min(qc) and min(qr) in Fig. 10, we see that our method is consistently
controlling the undershoots of the tracers. It is interesting, however, to notice how the gap between
VMS+DC and any HV for the current test is no longer as pronounced as it was for Squall line I
(Fig. 4). We may have found the proper tuning of the HV coefficients that greatly limit min(qr),
although it still does not limit min(qc).

The line-averaged contours of the cloud content are plotted in Fig. 11. As expected by looking
at the time series, the VMS+DC and HV solutions are similar, with a relatively small difference
in the value of qc. The overall shape (characteristic anvil), the height of the lifting condensation
level, and the vertical extension of qc agree with Weisman et al. (1988) and Weisman and Rotunno
(2004) for both solutions. The amount of accumulated rain confirms the similarities. We see this
in Fig. 12 where the contours of total accumulated rainfall are plotted at tf = 18000 s. We notice
that the structure of the precipitation resolved by our method does not resemble the shape of the
squall line as much as it did in Fig. 5. Nevertheless, the irregular pattern is supported by Frame
and Markowski (2006), although with a difference of a few millimeters in the maximum value of
precipitated water in both VMS+DC and HVa.

4. Conclusions

We have presented a dynamic and parameter-free alternative to the classical fourth order hyper-
viscosity to stabilize the solution of the coupled transport equations of water tracers to simulate 3D
deep convection using spectral elements. The current method, based on the Variational Multiscale
Stabilization (VMS) with crosswind discontinuity capturing (DC), has shown to have certain im-
portant properties that make it a suitable stabilizing alternative to hyper-viscosity in the simulation
of atmospheric problems modeled by a system of coupled transport equations with phase change.
Most importantly, VMS+DC is parameter-free –a clear advantage from the point of view of the
user of the code; it is numerically consistent; and it is anisotropic. Furthermore, it improves the
positivity preserving properties of the spectral element solution of the advection problem without
the need for additional filters. In the simulation of moist convection, this property is of major
importance although it remains a challenge to construct positivity preserving schemes at higher
order (e.g., see Marras et al. (2012) for one possibility of tackling this problem). Although our
approach is not fully monotonicity preserving (at least not for spectral element basis functions
beyond second order), it still helps in minimizing the undershoots. Obtaining negative tracers is
of major concern in weather simulations and climate modeling. With respect to parallel efficiency,
because each Laplacian requires one communication, fewer communications are required by VMS

2Because Frame and Markowski (2006) do not provide this information, we rely on a comparison with Weisman
et al. (1988) and Weisman and Rotunno (2004) whose initial state is the same.
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Figure 9: FM06: Time evolution of max(w) (top) and min(w) (bottom).
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Figure 10: FM06: time evolution of min(qc) (top) and min(qr) (bottom)
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Figure 11: FM06: line averaged vertical cross sections of qc at 1800, 3600, and 7200 seconds. Stabilization achieved
by VMS+DC (left column) and by HV with ν4 = 1× 108 m4 s−1 (right column).
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Figure 12: FM06: total accumulated rainfall (mm) at tf = 18000s. Left: VMS+DC. Right: HVa with νx = νy =
1× 109 m4 s−1, νz = 3× 105 m4 s−1.

Table 2: Salient properties of VMS+DC and HV

Method Parameter-free Anisotropic Consistent Monotonicity Parallel communication

VMS + DC
√ √ √

Improved As ∇2

HV ×
√ √

× As ∇2α

and DC than by high order dissipative operators. As we try to approach the exascale range of
computing, fewer communications are essential for faster and more scalable codes. We summarize
the most salient properties of VMS+DC in Table 2.

Although the method hereby described was originally designed around a second order operator,
we do not foresee a reason why, by a dimensionally consistent correction, it could not be adapted for
higher order operators in case one were interested in extending this machinery to a parameter-free
higher order hyper-viscosity-like dissipation. In this case, however, the cost of parallel communica-
tion would increase.

Finally, although it was built for finite and spectral elements, the discontinuity capturing dis-
sipation DC could be constructed, with little effort, for alternative numerical techniques such as
finite volume and finite difference methods.
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